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Abstract— A comprehensive discussion of the method of de-
coupling the multiconductor transmission line (MTL) equations
by the method of transformation of the voltages and currents
to mode voltages and currents in order to obtain their general

solution is presented. Various ways of defining and obtaining the
transformations are shown which serve to connect the myriad

of such definitions and also point out where inconsistencies in

those definitions can result. Structures for which the decoupling
is assured are also discussed. The MTL equations to be decoupled

are in the frequency domain, and extensions to their applicability

in the time-domain are shown.

I. INTRODUCTION

I N THIS PAPER we consider a (n + I )-conductor line

consisting of (n + 1) conductors which are parallel to the

z axis in a rectangular coordinate system. Let us assume

that the conductors are of uniform cross section in the z

direction as are the properties of the surrounding media (which

may be inhomogeneous). In other words, the line cross-

sectional dimensions are independent of z. Such a line is said

to be uniform. The multiconductor transmission line (MTL)

equations for frequency-domain analysis (sinusoidal, steady-

state excitation of the line) are

:V(z)=–Zi(z)

:i(2) =–Yv(z)

(la)

(lb)

where V(z) and ~(z) are n x 1 vectors containing the phasor

line voltages (with respect to the zero-th or reference con-

ductor) and phasor line currents, respectively. We use a caret

( “ ) to denote complex-valued quantitie~. The n x n compl~x

matrices of per-unit-length impedance, Z, and admittance, Y,

are symmetric and contain the n x n real, symmetric matrices

of per-unit-length resistance, R, inductance, L, conductance,

G, and capacitance, C, as

Z= R+jwL (2a)

Y= G+jwC. (2b)

The matrices L, C, and G are also positive definite as may be

shown from energy considerations. The fundamental assump-

tion in modeling a MTL with the transmission line equations is
that the electric and magnetic fields lie in a plane transverse to

the z axis which is called the transverse electromagnetic field

ManuscriptreceivedNovember10, 1995;revisedApril 19, 1996.
The authoris with the Departmentof Electrical Engineering,University of

Kentucky,Lexington, KY 40506USA.
PublisherItem Identifier S 0018-9480(96)05641-4.

structure or mode (TEM) of propagation. This field structure

is identical to that of the static field in the transverse plane.

This allows the computation of the per-unit-length matrices

G, L, and (7 as solutions of Laplace’s equation for the static

2D field structure in the transverse plane. If the surrounding

medium is homogeneous with parameters of conductivity, o,

permittivity, e, and permeability, p, then G, L, and C7 satisfy

the following identities:

LC =CL = /Mln (3a)

LG = GL = pal. (3b)

where 1~ is the n x n identity matrix with one’s on the main

diagonal and zero’s elsewhere. If the medium surrounding the

conductors is inhomogeneous, these identities obviously do not

apply. All of these per-unit-length parameter matrices can be

functions of frequency although the per-unit-length resistance,

1?, typically has the strongest dependence on frequency, and

the frequency dependence of L and C is typically negligible.

In the case of imperfect conductors (R # O) then x n internal

inductance matrix, L,, contains the internal inductances of the

conductors and is added to L. At high frequencies, R increases

as fi whereas L~ decreases at a rate of fi. Hence the internal

inductance matrix is frequently smaller that L and therefore

often neglectable. For the case of imperfect conductors and/or

inhomogeneous surrounding media, the TEM mode cannot

exist. In this case it is assumed that these fields remain

approximately TEM which is referred to as the quasi-TEM

approximation. The validity of the quasi-TEM approximation

was investigated in [1], [2], and the MTL equations have been

successfully used to characterize lossy ardor inhomogeneous

structures into the gigahertz frequency range.

These coupled transmission line equations have a long

history of representing many diverse structures. Numerous

texts have documented their utility [3]–[ 14]. Some of the more

pioneering work was done around 1940 by Pipes [15], [16].

Pipes also gave a thorough discussion of their solution for

uniform and nonuniform lines in [17]. Subsequent applications

of the MTL equations appeared in telephone system [18],

[19] and power distribution system analyzes [20]-[25]. The

emphasis on prediction of crosstalk in cables that interconnect

electronic equipment renewed that interest [26]–[30], and the

MTL equations were also adapted to the investigation of the
effects of incident fields on those cable systems [30]–[32].

The increasing emphasis on microwave circuits provided a

renewed interest in using the MTL equations to model these

high-frequency structures that continues today. Much of that

work concentrated on lossless lines [33]–[37]. The increasing
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frequencies of use in high-density circuits have caused the

conductor losses, represented by R, L,, and, to some extent,

losses in the medium represented by G to be significant. The

frequency-domain transfer function obtained from a solution

of the phasor MTL equations in (1) is a straightforward way of

including those frequency-dependent losses and can be used

to provide the time-domain solution for general MTL’s via

the inverse Fourier transform. The input signal to the line is

decomposed into its spectral components and passed through

the phasor transfer function yielding the Fourier transform of

the output signal of the line. This is converted to the time

domain with the inverse Fourier transform. This time-domain

solution technique has a long history of use and is referred

to as the time-domain to frequency-domain or TDFD method

[13]. The only drawback to the TDFD method is that it relies

on superposition and hence cannot be used in the case of

nonlinear terminations of the line since the transfer function

must contain those terminations and hence is nonlinear. The

increasing use of nonlinear line terminations has required the

direct solution of the complete MTL equations in the time

domain and has resulted in numerous techniques such as

finite-difference time-domain (FDTD) methods [13], [38], the

waveform relaxation technique [39], the generalized method

of characteristics [40], [41] and the asymptotic waveform

evaluation (AWE) technique [42], [43]. Another reason for

the development of alternative direct time-domain solution

techniques is that the decoupling method which we will discuss

requires similarity transformations which, for the lossy line

case, are functions of frequency thereby making their direct

application to the time-domain solution of ‘the MTL equations

difficult. However, the frequency-domain results of this paper

can be applied to the time domain for lossy lines with nonlinear

terminations by generating a linear 2n-port of the line and

using convolution [44]. So the frequency-domain decoupling

of the MTL equations has broad application. The decoupling

method has also been applied to nonuniform lines [45], [46].

Although we will discuss the exact solution of the phasor MTL

equations, there are also various approximate ways of solving

them most of which make lumped-circuit approximations to

the MTL [13], [14], [47], and [48].

The purpose of this paper is to give a comprehensive

discussion of the primary method of solving the phasor MTL

equations via the method of decoupling. Although this has

been a standard technique for over 60 years there remain

some misunderstandings and inconsistencies in its application.
Some of these were highlighted in [49]–[51 ]. Here we give an

alternative view of these problems and discuss structures to

which the decoupling technique applies.

II. DECOUPLING THE MTL EQUATIONS

The method of using a change of variables is perhaps

the most frequently-used technique for generating the general

solution to the MTL equations. In implementing that method

we transform to mode quantities as

v(z) = ?~vm(z) (4a)

i(z) = 21im(z). (4b)

The n x n complex matrices Tv and TI define a change of

variables between the actual phasor line voltages and currents,

V and I, and the mode voltages and currents, ~n and In.

In order for this to be valid, these n x n matrices must be

nonsingular, i.e., T~l and T; 1 must exist where we denote the

inverse of an n x n matrix M as M – 1, in order to go between

both sets of variables. Substituting these into the phasor MTL

equations in (1) gives

:Vn = ‘+~~ZklIm (5a)

;Im = –T;~YTvvm. (5b)

If we can obtain a fv and a TI such that T~12TI and

T~lYTv are diagonal as

+~lZT1 = i

-!: I

21 0 . . . 0

(J 22 “.. (
— (6a)

“. “.. . 0

0 . . . 0 in

T;lYTV =y

[: i

Y1 o ““” o

_oij2 ””.:
— (6b)

“. “.. . . 0

0 . . . 0 y.

then the phasor MTL equations are uncoupled as

gvml(z) = –j~iml(z), +iml(z) = –y~vml(z)

:Vmn(z)=–;nfmn(z), :imn(z) = –ynvmn(z). (7)

Therefore if we can find two n x n matrices Tv and *1 which

simultaneously diagonalize both per-unit-length parameter ma-

trices, 2 and Y, the solution essentially reduces to the solution

of n uncoupled two-conductor lines.

In order to further address that question, we examine the

application of the mode transformations to the uncoupled,

second-order MTL equations obtained from (1) by differen-

tiating each with respect to z and substituting the other:

~v(z) = ZYv(z) (8a)

gi(2) = Yz@). (8b)

In differentiating each equation with respect to z we are

assuming that the per-unit-length parameter matrices, 2 and

Y, are independent ~fAz, i.e., the line is uniform. It is important

to note that 2Y # YZ and the order of multiplication must be

preserved. Substituting the transformations given in (4) yields

gvm(z) = ?;ltiivvm(z)

= (?;’zT,)(?;lY&v) vm(z)
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= @m(z) (9a)

gim(z) = TjlYz*Iim(z)

= (Tj’iiv)(i;’z?, )im(z)

=&&(z). (9b)

If 2 and y are each diagonalized by Tv and *1 as in (6), then

the second-order equations in (9) are likewise diagonalized

by Tv and TI but the reverse is not necessarily true. For

example, if Z and Y happen to satisfy the condition that

ti = YZ = 61. (an important special case of a lo~sless

line in a homogeneous medium) then we may choose TV =

T1 = in and the second-order differential equations in (9)

are uncoupled yet the first-order equations in (5) are not:
~ = ~ and j = Y. For this important special case, all n

propagation constants are identical. In the following we will

show that if all n propagation constants are distinct, then

transformations TV and *1 can be found which decouple the

second-order equations in (9), and, in addition, z and O are

likewise diagonal so that the first-order equations in (5) are

simultaneously decoupled by the same transformations Tv and

21. In the case of repeated propagation constants we will show

that.2 and ~ are not necessarily diagonal but are block diagonal

where the blocks are associated with the distinct propagation

constants.

The decoupling of the second-order equation: ~s in (9) ~elies

on finding a TV and a TI which diagonalize ZY and YZ via

similarity transformations as

T;~zYTv = 2y = +2 (lOa)

T;lYZTI = y2 = qz (lOb)

where ~2 is a n x n diagonal m~t~x. The columns of TV

are said to be the eigenvectors of ZY and the columns of ?1. .
are the eigenvectors of YZ [52–54]. The entries in ?2, ?? for

i= l,... , n, are the eige~v~ues ofAZY and of YZ [52–54].

That the eigenvalues of ZY and YZ are the same follows

from the fact that the eigenvalues of a matrix, Al, and its

transpose, iW~, ~are the same [52–54]. Taking the transpose of

ZY yields (ZY)t = YtZt = YZ where we have used the

fact that Z and Y are symmetric, ~.~, 2’ = Z and Y’ = Y.

Therefore the transpose of ~ is YZ thus showing that they

have the same eigenvalues. Hence, in order to decoup~e the

second-order MTL equations we only need to find a Tv or

a TI that diagonalize the product of Z and Y as in (lOa) or

as in (lOb).

In order to diagonalize ~ or YZ as in (10) we must be able

to fihnd a linehwly independent set of n eigenvectors (columns

of Tv and TI) in which case Tv and +1 are nonsingular

[52,53]. A sufficient condition for this is that all n eigenvalues,

??, are distinct [52,53]. The case of n distinct eigenvalues is
straightforward and poses no problems since it can be shown

that the eigenvectors associated with distinct eigenvalues are

unique only within an arbitrary constant [52,53]. The problems

arise in the case of repeated eigenvalues of ZY. There are

important cases where some of the eigenvalues are repeated

yet a linearly independent set of n eigenvectors can be found
such that fi can be diagonalized as in (10). In the case of

repeated eigenvalues, the eigenvectors (columns of Tv and

TI) corresponding to those repeated eigenvalues are not so

unique. The eigenvectors associated with a repeated set of

eigenvalues can be transformed with a nonsingular transfor-

mation to another set which retain the ability to decouple the

second-order equations. Structures that exhibit certain types of

symmetry can result in repeated eigenvalues and hence give

rise to this nonunique assignment of the columns of TV or

!i’J associated with those repeated e~genval~es. The nonunique

assignment of these columns of TV or TI will not effect

the diagonalization of the second-order equations in (10) but

will affect the diagonalization of the first-order equations in

(6). Nevertheless, the problem of decoupling the first-order

equations in (1) is closely associated with the problem of

decoupling the second-order equations of (8). Hence we will

concentrate on decoupling the second-~rder equations in (8)

and will assume in this article that ZY can be diagonalized

as in (10).

Thus the equations governing the mode voltages and cur-

rents in (9) are decoupled and have the simple solution

where the matrix exponential are defined as

10 #2z “.. :
e&/z = . 1 (12)

“. “. o

0 . . . () ~sc%z

and V: and ~~ are n x 1 vectors of (as yet) undetermined con-

stants associated with the forwartiackward-traveling waves

of the modes. Transforming back to the actual line voltages

and currents via (4) gives the general solution to the MTL

equations as

Therefore if we can find a transformation that diagonalizes,..
either & or YZ then the decoupling of the second-order

equations is assured and the general solution to the MTL

equations in (1) can be readily obtained.

Because of (10), the mode transformations TV and *I are

related. To obtain this relationship, suppose there are k distinct

eigenvalues. Arrange them in ~2 as

rmnl fJ ““” o 1

where 1~~ is the nk x n,k identity matrix and nk is the

multiplicity of the repeated eigenvalue ?;. Digital computer

subroutines that compute eigenvalues/eigenvectors of a general

matrix do not generally provide this ordering. The eigenvectors
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(columns of?v and&I) prearranged inthe same sequence

as the eigenvalues in (14) as

TI = [Tvl TV2 ... Tvk] (15a)

!i’1 = [~rl *1Q . . . ?Ik] (15b)

where ~Vk and ~Ik are ‘n x nk. Using the relations in (10)

yields

Observing that Z and Y as well as 72 are symmetric and

taking the transpose of (16) yields

Because of these relations and the assumption that $: # 7;

for i # j’, the Tt, and +1 must be related as

where D is block diagonal and b~ is nk x nk. Since Tv and

TI are nonsingular, ~ is also nonsingular. However, ~ is not

necessarily symmetric. Equation (18) shows that

If Tv and *1 are real, (19) is equivalent to stating that the

eigenvectors are orthogonal [52]–[54]. If all n eigenvalues are

distinct, each D~ is a scalar and ~ is diagonal (and therefore

symmetric) and hence T~Tv = D = +~fl with D% on the

main diagonal and zeros elsewhere.

The transformation matrices can be redefined such that ~

is the identity matrix. An essential requirement of any such

redefinition is that the redefined transformations must retain

the ability to diagonalize the second-order equations as in (10).

There are several ways of doing this. For example, suppose

we redefine the transformations as

T; =i’v(b”)-l (20a)

f; =TI. (20b)

The new transformations yield

(T;)’*; =D-’T;T~
= In. (21)

These redefined transformations retain the ability to de-

couple the second-order equations. To show this, we form

(+;) -%Y?;7 = b’?;lzYT@-l = @y@’)-l =

72. This is true because fi and ~2 commute since they

are block diagonal as in (14) and (18) and each block of

$2 is simply ~~ln~. Because the redefined transformations

retain the ability to decouple the second-order equations,

all of the previous results remain unchanged. Hence, we

may assume throughout the remainder of this article that the

transformations are chosen such that ~ is the identity matrix:

T~T1 = T;TV = lm. (22)

Next we will show that 2 and j in (6) are block diagonal

and symmetric. Let us assume that none of the eigenvalues

(propagation constants) are zero and hence, according to (10),

.2 and y are nonsingular. Premultiplying and postmultiplying

(10) by, for example, j-l and Z-l yields

W2=yzi (23a)

Y?2 = ?2Y. (23b)

Observing that 72 has the form given in (14) where ~~ # ~~

for i # j, (23a) shows that .2 is block diagonal as

pll o . . . 0 ,

Io .222 ““.
z= I (24)

r “. “.. . 0

0 . . . 0 inknkJ
where 2Zj is ni x nj. Similarly we can show that y is also

block diagonal. In the case of n distinct eigenvalues, the 2,~

are scalars and hence 2 and ~ are diagonal matrices so that the

first-order equations in (6) are in fact decoupled. In the case

of repeated eigenvalues 2 and j are simply block diagonal

matrices. Nevertheless, if the transformations are chosen such

that (22) is satisfied then 2 and y are also symmetric. This can

be shown by substituting (22) into (6) to yield

Since Z and Y are symmetric, this shows that ,2 and y are

also symmetric, i.e., 2 = 2t and @ = fit.

The general solutions for the line voltages and currents

given in (13) contain a total of 4n undetermined constants

in the n x 1 vectors V;, V;, I:, and I;. We will now

relate those by defining the characteristic impedance matrix

thereby reducing the number of undetermined constants to 2n.

Substituting (13b) into (lb) yields

If we define the characteristic impedance matrix as

j-c = y-l+lqfyl

(26)

(27)

(28a)

(28b)

and the number of unknowns is reduced to the 2n unknowns

in the n x 1 vectors ~~ and ~~. An alternative form of the

characteristic impedance matrix can be obtained from ( 10b)

Y-~TI = zT~+-2 (29)
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Substituting this into (27) yields

j’c = ~*l+-l+;l. (30)

Similarly, substituting (13a) into (la) yields

i(z) = –2-1 :V(z)
—. Z-lTv@~l i~(e-~zti~–eyzV~). (31)

\ /

Y.

If we define the characteristic admittance matrix as

yc = ~-l+v~~;l (32)

then

V(z) = ?~(e-$ZV~ + e7ZV~) (33a)

l(z) = Y~~~(e-yzV~ – e~ZV~) (33b)

and the number of unA~wns is reduced to the 2n unknowns

in the n x 1 vectors Vm and V:. An alternative form of the

characteristic admittance matrix can be obtained from (10a)

z-lT~ = YTV+-2. (34)

Substituting this into (32) yields

yc = y~v+-l+~l. (35)

Additional relations for the characteristic

impedance/admittance matrix can be obtained. Substituting

(28a) and (33b) into (la) gives

“ - l.ZCT1~eFqZj~.m (36a)& = f#z+~lY~lZ

Similarly, substituting (28b) and (33a) into (lb) gives

(36b)Q* = e~?z~;l~- l*I~e~~zj~.
m

Equation (36) shows that

z~ = zi~i-1. (37)

Substituting (32) into (37) yields

& = &@;ly-1. (38)

But this is the inverse of (35) showing that YC = ~~1 as

expected. In like manner we may obtain

& =+v~-l+;l~ (39)

yc =+I+-l*Fly (40)

yc = +I+f;lz-l. (41)

Additional relations for the characteristic impedance/

admittance matrices can be obtained by substituting (18). For

example, substituting (18) into (27) yields

Zc = Y-1(?;7)-1’@; (42)

since D~D– 1 = ~ even if Tv and *1 are not chosen such
that (22) is satisfied. But (42) is the transpose of (38) showing

that, as expected, the characteristic impedance and admittance

TABLE I

matrices are symmetric: .!!?~ = ZC, Y~ = YC. Similarly,

substituting (18) into (30), (32) and (35) yields

~c = ~(y;)-1~-l~; (43)

Y~ =2-l(?;)-l@’; (44)
yc =y(@-ly-l&. (45)

A summary of the relations for the characteristic

impedance/admittance matrices is presented in Table I.

III. SPECIALIZED RELATIONS

All of the above expressions for voltage and current in

(28) and (33) as well as the expressions for the characteri~tic

impedance/admittance matrix given in Table I involve Tv

or T1. None involve Tv and ?’I. They only assume that

the products of the per-unit-length impedance and admittance

matrices, Z and Y are diagonalizable as in (10) and that Z and

Y are symmetric. So long as one consistently uses expressions

for Zc as in Table I and the expressions for voltage and

current in (28) or (33) that involve only TV or ~r the results

are independent of the redefinition of the elements of T}- or

TI such as in (20). In addition, they do not assume that the

matrices z and y in (6) or ~ in (18) are diagonal or that

Tv and TI are chosen to satisfy (22). The problems and

inconsistencies arise when one attempts to define relations

between Tv and TI so that the above relations can be written

in terms of a mix of Tv and ~1.

It is common to find the following relations [12], [34]–[37],

[49]-[51]:

ZC = ~lti~ = (fi~)-lfi;l = fivfi;l (46a)

ti;h~ = In (46b)

= M;tiv

til = ~-ltiv~ (46c)

tiv =Y–ltil~. (46d)

The ~v and fil are not the same as Tv and &I but are

related by appropriate transformations of the columns of those

matrices as will be demonstrated.
In order to obtain the relationships in (46) we will assume

that TV and TI are chosen to satisfy (22), !?~fI = In, and
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will define a nonsingular, block diagonal, matrix d such that

2 and y are block normalized to the propagation constants of

the modes, ~, as

T;lZTI = z

= i%) (47a)

+~lyfv =Y

= ~-1~ (47b)

where & is ni x nj and & = O for i # j. This is permissible

since 2 and y are similarly block diagonal as was shown

previously and we assume that there are no zero propagation

constants. In addition we showed that 2 and y are symmetric

and hence d is symmetric, i.e., h = $. Therefore !?V and T1

are related as

+1 = %~fvh~ (48a)

Tv =Y-lTId-19. (48b)

Substituting these into the relations for the characteristic

impedance matrix given in Table I and observing that the

transformations are chosen to satisfy (22) yields

Zc = TvdT; 1

= Tv2T~ . (49)

Define the transformations in (46) as

Mv = TVDV (50a)

MI = TID1 (50b)

where & and D1 are block diagonal, nonsingukir matrices
wi{h Dv,I,j of dimension ni x nj and &,I~J = O for i # j.

In terms of these, the above results become

jjc = &vlj:ldDIM~ 1

=&D~%(D;l)tM~ (51a)
A

ti~&I = b@ I (51b)

&f;Mv = D;DV (51C)

ti~ = .Z-lMvD~ld?D1 (51d)

&v =?-%@~ld-l@v. (5 le)

In order to provide the equivalence between these expressions

and the common ones given in (46) we must have

& = 2-V2 (52a)

Dv = dl/2 (52b)

in which case (51) are identical to (46). It should be noted

that in the common case where all n eigenvalues are distinct,

d is diagonal and these transformation matrices are simple to

obtain.

Perhaps the desire to obtain the relations in (46) arises for

the following reason. The average power flow on the line is

Pav(z) = ~Re(V’fi)

= ~Re(V~?~&I&~ ) (53)

where & denotes the complex conjugate of ~. If Tv and

?l are such that

+;?l = In

then

P.V(Z) = ~Re(V2fi~)

and the power is the sum of the powers

(54)

(55)

of the individual

modes. The condition in (54) is equivalent to stating that

the voltage and current eigenvectors, the columns of Tv and

T1, are orthonormal [52]–[54]. In subsequent subsections we

will show several cases for which the MTL equations are

decoupleable and (54) is satisfied. For these ~ases i@&I #

In except in the Iossless line case where &fv and ikfI are

both real so that (46b) is satisfied.

IV. SOLUTION FOR LINE CATEGORIES

The solution process described previously assumes that

one canAfind n X n, nonsingular transformation matrices, +1

andlor Tv, which diagonalize the product of per-unit-length

par~me~erArnatrices, YZ ~r ZYl ~ia a similarity transformation

as Y’; lYZT1 = J2 and ?’~1 ZYTV = J2. There area number

of known cases of n x n matrices, W, whose diagonalization

is assured via a similarity transformation as T– 1~~.

These are [52]–[54]:

1) all eigenvalues of M are distinct;

2) ~is real, and symmetric;

3) fiis complex but normal, i.e., fifit” = &* M where

we denote the transpose of a matrix by t and its

c~njugate by *;

4) &fis complex and Hermitian, i.e., M = &t*.

For normal or Hermitian ~, the transformation matrix can

be found such that T–l = Tt” which is said to be a unitary

transformation. For a real, symmetric &f, the transformation

matrix can be found such that T– 1 = Tt which is said to

be an orthogonal transformation. For other types of matrices,

we are not assured that a nonsingular transformation can be

found that diagonalizes it.

There exist digital computer subroutines that find the eigen-

values and eigenvectors of a general complex matrix. These.,. ,,.
can be used to attempt to diagonalize ZY or YZ. However,

because the number of conductors, n, of the MTL can be quite

large, it is important to investigate the conditions under which

we can obtain an efficient and numerically stable diagonaliza-

tion. In addition, the diagonalization must be repeated at each

frequency so it is important to determine where ZY or Y.% can

be diagonalized with a frequency-independent transformation.

For application to the direct time-domain solution of the

MTL equations via decoupling we also must require the

transformation to be real and frequency independent. The

following subsections address those points.

A. Perfect Conductors in Lossy, Homogeneous Media

For this case, R = O and we have the identities in (3) so that

Z = jwL (56a)



PAUL DECOUPLING THE MULTICONDUCTOR TRANSMISS1ON LINE EQUATIONS 1435

Y= G+jwC

= /4((7 + j(J&)L-1 (56b)

and

fi = ii = jW~(O + jWE)ln. (57)

The propagation constants are identical and given by ~, =

jw,u(m + jwe). Hence we only need to diagonalize L as

T-lLT = Lm (58)

where Lm is a diagonal matrix with eigenvalues lmi on the di-

agonal and zero’s elsewhere. This can be readily accomplished

with an orthogonal transformation such that T– 1 = Tt using,

for example, the stable and highly efficient Jacobi algorithm

[54]. Defining the transformation matrices as

Tv = T~

=T

= (T-l)t

we have

T;lZTI = jwLm

=&j

T;lYTV = V(O + jwc)L;l

=J-ly

Hence 2 and ij are diagonal. Therefore we obtain

Thus

so that the transformations in (50) become

(59)

(60a)

(60b)

(61a)

(61b)

(62a)

(62b)

ifv=
/

‘+TL~2
7

VI = (jl;l)t

and the power flow relation in (55) holds. In

(63a)

(63b)

addition,
iii~if; . ~– 1 in the case of a lossless medium, m = O.

One can also verify that the identities in (46) hold. The

characteristic impedance becomes

2C = ‘+L.
7

An example of this case is the coupled

(64)

stripline.

B. Perject Conductors in Lossless, Inhomogeneous Media

For this case, R = Cl and G = O and YZ = –W2CL.

However, we no longer have the identity in (3). Nevertheless

we may diagonalize L and C since they are real, symmet-

ric and positive definite. This is a classic and well-known

problem [52–54]. First find an orthogonal transformation that

diagonalizes C as

Utcu = @ (65)

where 192is a diagonal matrix with 8? on the main diagonal and

zero’s elsewhere and U– 1 = Ut. Since C is real, symmetric,

and positive definite, its eigenvalues, 19~, are real, positive,

and nonzero. Hence, we can obtain the square root of 02,@,

which is real, diagonal, and nonsingular and form the product

dUtLUt9. Since this is real and symmetric, we can diagonalize

it with another orthogonal transformation as

St(9UtLU@S = AZ (66)

where A2 is a diagonal matrix with real elements A? on the

main diagonal and zero’s elsewhere and S– 1 = St as before,,

Define the matrix T as

T = U%S. (67)

In order to minimize numerical errors, the columns of T can

be normalized to a Euclidean length of unity as

T – Tanorm — (68)

where a is the n x n diagonal matrix with entries

1
a%z=

F

(69a)

5%
k=l

CI,J = o. (69b)

The mode transformations that simultaneously diagonalize L. .
and C can then be defined as

T~ = Uesa

= T.Orm

Tv = u(r~sa-~

= T:;;m .

Also

(70a)

(70b)

(71a)

(71b)

(72a)

(72b)
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Thus ?~l~??v = ?~l?.%?l = –W2A2 and

~ = jwA. (73)

Therefore

T~~ZTI = jwa2A2

=2+ (74a)

+;ly+v =jwa-2

= J-l$ (74b)

and .2 and y are diagonal. Hence we obtain

d = a2A (75a)

T;T1 –– In. (75b)

Thus

DV = aA112 (76a)

DI = D;l (76b)

and the transformations in (50) become

fiv = U8-~SA112 (77a)

MI = U&$A-~/2. (77b)

Again the power flow relation in (55) holds and M~MI = 1..

One can also verify that the identities in (46) hold. The

characteristic impedance matrix becomes

2C = UO-1SASt9-lUt. (78)

This method was obtained previously in [13], [14], [27] and

is a simple extension of well-known results [52]–[54]. It is

equivalent to the method of [49]. The coupled microstnp is a

common example of this case.

C. Lossy Conductors in Lossy, Homogeneous Media

Consider the case where we permit imperfect conductors,

R # O, but assume a homogeneous medium. The matrix

product Y2 becomes, using the identities for a homogeneous

medium given in (3)

f~ = GR + jwCR + (jW#O – w2#&)l.

=(;+~w)cR+(~wK~-w2N.)ln G’%

and we have neglected the internal inductance of the conduc-

tors. Hence we need only diagonalize CR as

&@& . Az (80)

where A2 is a diagonal matrix with A: on the main diagonal.

The eigenvalues Y2 become

??= (;+~w)A:+(~wP~-w2w.). (81)

But this is virtually identical to the previous problem where we

interchange the roles of L and R. However, R is frequency

dependent as is T (which is real). Although this poses no

computational problems for frequency-domain calculations it

does create problems in tbe direct time-domain solution. If

either all (n + 1) conductors are identical or the n conductors

are identical and the reference conductor losses are ignored,

then (80) requires that we only diagonalize C so that the trans-

formation is frequency independent. Lossy, coupled striplines

can be handled with this development.

D. Cyclic-Symmetric Structures

The MTL structures considered in the previous sections are

such that the matrix products Y2 and 2Y can always be

diagonalized with a numerically efficient and stable similarity

transformation. The transformations are real and, with the

exception of the case in section (c), frequency independent

and can be directly applied to the time-domain solution. Not

all structures can be diagonalized in this fashion. One can,..
attempt to diagonalize ZY or Y2 with a digital computer

subroutine that determines the eigenvalues and eigenvectors of

a general, complex matrix but we are not assured that a linearly

independent set can be found that diagonalizes the matrix.

Furthermore, the transformation matrices will be frequency

dependent. This section discusses MTL’s which have certain

structural symmetry so that a numerically stable (and trivial)

transformation can be always be found which diagonalizes

2Y and Y2. Furthermore this transformation is frequency

independent regardless of whether the line is lossy and/or the

medium is inhomogeneous, i.e., the general case.

Consider structures composed of n identical conductors and

a reference conductor wherein the n conductors have structural

symmetry with respect to the reference conductor so that the

per-unit-length impedance and admittance matrices have the

following s&uctural symmetry [13], [29]:

.2=
23 22 ““. ““. 23

23 ““. ““. ““. 21 22

.Z2 23 . . . 23 Z2 ZI

(82)

A

and Y has a similar form. A general cyclic-symmetric matrix

~ has the entries given by

[M]ij = A&+l (83a)

where

i&*n = iilj (83b)

M.+2_J = M.j (83c)

and indices greater than n or less than 1 are defined by

the convention: n + j = j and n + i = i. Because of

this special structure of the per-unit-length matrices, they are

normal matrices, .2’2t* = %“ 2, and we are guaranteed that

each can be diagonalized as [53]

f-lz. =3; (84a)

T–lYT =+; (84b)
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where the n x n matrices ~~ and ~$ are diagonal whose modes. One can also verify that the identities in (46) hold. The

diagonal entries are given by characteristic impedance matrix becomes

L[’?;Iii = fi[z]1pL{(2~/n) (P-l) (i-1)} 1 (85a)
=1

[ 1F#lit =~[Y]lp/{(’fi/~) (P-l) (’-’)} . (85b)
p=l

Hence the first-order equations in (5) are uncoupled. The

transformation is trivial to obtain

1 /{(27r/n)(i-l)(j-1)}[T],j = _ (86a)

and T is unitary and symmetric:

The square roots of the eigenvalues of 2Y and Y2 (the

propagation constants) are then ~ = ~z~Y. Observe that

+tf = +2

=D (87a)

where ~ has a particularly nice form

D=

100 ...0

000 ...0

000 ...1
. . .
. . . “.
. . .

001 ...0

010 ...0

0

1

0
. .
. .
. .

0

0

Hence we may define, according to (20)

TV =?(b-l)’
=+-1

(88a)

+1=+ (88b)

and ?~*I = 1.. According to (17) ~ commutes with ~2 so

that w? have the identity ~2D = D~2 .AIn addi;ion, because of

(87a) D is symmetric, fit = fi, and D-l = D. Therefore

and the transformations in (48) become

The transformation is not unitary, so that the power flow

relation in (55) does not hqld. However, T~?I = ~– 1 = ~.

Because of the form of D given in (87b) the total power

flow on the line is a simple combination of the power in the

ZC = T~z.@?. (91)

As an illustration of these results consider a four-conductor

line (n = 3) with cyclic symmetric structure such that

[1
z, Zm Zm

2= {m .2. .i’m
Zm Zm z.

(92)

and Y has a similar form. The matrix T which decouples the

equations becomes

whose square root is

100

001 1 (93b)
010

Hence Tv = T-l = ? and T1 = ~. The propagation

constants become

?1 = @s + ‘2.&)(Ys + 2Ym) (94a)

?2 =5’3 = J(Z. – .ZJ(YS – Ym) (94b)

and two of the propagation constants are equal. Define the

characteristic impedances of the modes as

4z& = (2. + 2zm)/(i. + 2im) (95a)

J (95b)z= = (2. – zm)/(Ys – Pm)

yielding

The characteristic impedance matrix becomes

(97)
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We obtain

where k; = l/~~. The transformations become &l =

TDI, Mv = T*DV.

There are a number of cases where a MTL can be approx-

imated as a cyclic-symmetric structure. A common case is a

three-phase, high-voltage power transmission line consisting

of three wires above earth. Assuming a balanced line wherein

the conductors are transposed at regular intervals, the per-

unit-length matrices, 2 and Y, take on a cyclic-symmetric

structure. The transformation is referred to in the power trans-

mission literature as the method of symmetrical components

[5]. In the case of unbalanced lines where, for example, one

phase may be shorted to ground, this transformation does not

apply. Other approximations of MTL’s as cyclic-symmetric

structures are useful. Cable harnesses carrying tightly-packed,

insulated wires have been assumed to be cyclic symmetric

structures on the notion that all wires occupy at some point

along the line all possible positions [29]. This leads to a cyclic-

symmetric structure of the n x n per-unit-length impedance

and admittance matrices that is similar to the special case

of transposed power distribution lines in that all off-diagonal

terms are equal and, if we assume the conductors are identical,

the main diagonal terms are equal.

Other common cases are the cyclic-symmetric, three-

conductor lines consisting of two identical conductors above

a ground plane such as the coupled microstrip. The per-unit-

length impedance and admittance matrices become

[1j.=2, .i’m
Zm .2.

[1

p= Y. em
Ym P. “

(99a)

(99b)

The transformation matrix and propagation constants simplify

to

(100a)

4
% = (.2s+ zm)(z i-L) (100b)

?2 = (2.s – zm)(Y. – Yin). (1OOC)

This transformation is very common in the microwave litera-

ture and is referred to as the even-odd mode transformation.

Defining the even-odd mode characteristic impedances as

we obtain

[1d= ~ ;.
c

(101)

(102)

and fi = 1 z. The characteristic impedance matrix becomes

Also

‘“”M-w (104a)

““*[R -%1

(104b)

The power relation in

are satisfied.

(55) as well as the identities in (46)

E. The General Case

The results of this paper assume that a similarity trans-

~ormation can be found which diagonalizes the products of

Z and Y. This is accomplished for the above cases but

for others one may or may not find n linearly independent

eigenvectors. Although other cases may not be diagonalizable

they can be reduced via a similarity transformation to more

convenient forms. For example, all matrices can be reduced to

the Jordan canonical form with the eigenvalues on the main

diagonal, one’s in selected positions on the upper diagonal,

and zero’s elsewhere [52]–[54]. Although not completely

decoupled, the solution of the second-order MTL equations

is considerably simplified [27]. Also one can always find a

unitary transformation that reduces any general matrix to upper

triangular form [53]. This reduction, while not completely

decoupling the MTL equations can result in a simplification

of the general solution.

V. WFLECTION COEFFICIENT MATRICES

It k common to define a voltage reflection coefficient

matrix, fiv (z), by analogy to the two-conductor line. The

expressions for the phasor voltages and currents in (13) can

be written in the form of forward-travel~ng waves ~(z) and

1+(z), and backward-traveling waves, V– (z) and 1- (z), as

v(z) = V+(2)+ v- (z) (105a)

i(z) = i+(z) – i- (z) (105b)

where V*(z) = Tve+~ZV~ and ~*(z) = ~Ie*~Z~~. As

was shown previously, the forward and backward traveling

voltage and current waves are related by the characteristic

impedance matrix as V*(z) = 2c~* (z). Define the voltage

reflection coefficient matrix, f’v (z), in a logical manner relat-

ing the reflected or backward-traveling voltage waves to the



PAUL DECOUPLING THE MULTICONDUCTOR TRANSMISSION LINE EQUATIONS 1439

incident or forward-traveling voltage waves at any point on

the line yields

v-(z) = rev+. (106)

Also

l-(z) = Ycrv(z)zGi+(z). (107)

Hence, the current reflection coefficient matrix becomes

r~(z) = –Y~f~(z)z~ (108)

since the total backward-traveling current is –~– (z). The

reflection coefficient matrices are, in general, not symmetric.

Although (108) reduces to the scalar case for two-conductor

lines, it is important to distinguish between the two reflection

coefficient matrices in the MTL case since the products in

(108) do not commute. Substituting (106) into (105) gives

V(2) = [In+ Fv(z)]v+(z)

= [ln - ZJ,(Z)YG]V+(Z) (109a)

2(2) = Y& – Fv(z)]v+(z)

= [In+ z&,(z)Y~]v+(z). (109b)

Similarly we obtain

V(2) = ZC[ln + YJ@)zc]i+(z)

= .&[ln – r~(z)]i+(z) (llOa)

i(z) = [1. – Y~fiv(,z)z~]i+(z)

= [In+ r,(z)]i+(z). (llOb)

The input impedance matrix at any point on the line relates

the total voltages and total currents at that point as

V(Z) = Zi~(~)~(~). (111)

Substituting (109) and (1 10) into (1 11) yields

~in = [172 + f’V(~)][l~ – FV(.Z)]-lZC

= ZC[L + Ycfv(z)zc] [In – Ycrv(z)zc]-l

= z~[ln – f~(z)][ln + f~(z)]-1. (112)

Similarly, the voltage reflection coefficient matrix can be

written in terms of the input impedance matrix at a point on

the line from (1 12) as

f’v(~) = 2c[2in(~) + .ZC]-l [2in(7) – 2c!]2~l

= [2i~(2) - 2C][2i~(~) + 2C]-1. (113)

From the relation for the current reflection coefficient given by

(108) and observing (1 13) we see that the current reflection

coefficient matrix is

ir(z) = –Z;lFV(Z)ZC

= ‘[2i~(2) + 2C]-l[2i~(~) - 2C]

= ‘2=1 [2i~(~) – 2C][2i~(~) + 2C]-12C. (1 14)

Although the above formulas reduce to the corresponding

scalar results for a two-conductor line, the MTL results are

considerably more complicated. In addition, one must dis-

tinguish between whether the voltage reflection coefficient

matrix or the current reflection matrix is being used since the

relation between the two is not simple. This has also led to

misunderstanding and confusion.

VI. SUMMARY AND CONCLUSION

This paper has attempted to clarify some of the problems

associated with the decoupling of the phasor MTL equations.

Diagonalizing the matrix products 2Y and/or Y2 with simi-

larity transformations as T~12YTv = ~z or T~1Y2T~ = ~2

may or may not be possible. However, when it is possible, the

solution to the MTL equations is straightforward. We have

shown a number of common cases where this diagonalization

can be accomplished. For those cases where the diagonaliza-

tion is assured, it can be accomplished with a numerically

stable and frequency-independent transformation. Additional

topics analogous to the common two-conductor line for the

MTL case such as the voltage and current reflection coefficient

matrices and the input impedance matrix were also discussed.

Although these quantities reduce to the familiar results for a

two-conductor line, in the case of a MTL they are not as simple

and care must be maintained to observe the proper order of

matrix multiplication.

We also examined the common redefinitions of the trans-

formations which have led to confusion in the literature. The

keys to obtaining correct quantities such as the characteristic

impedance matrix with the alternative transformations are to

arrange the eigenvalues and eigenvectors as i! (14) and (15)

and normalize the eigenvectors such that T~TI = 1. while

retaining the ability to decouple the second-order equations.

This leads to a consistent redefinition of the transformation

matrices fiv,I. The topic is not difficult but can be made so

if one defines quantities not directly necessary to achieve the

decoupling of the MTL equations. This has led to considerable

confusion and the results of this paper are intended to point

out
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