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Decoupling the Multiconductor
Transmission Line Equations

Clayton R. Paul, Feliow, IEFEE

Abstract— A comprehensive discussion of the method of de-
coupling the multiconductor transmission line (MTL) equations
by the method of transformation of the voltages and currents
to mode voltages and currents in order to obtain their general
solution is presented. Various ways of defining and obtaining the
transformations are shown which serve to connect the myriad
of such definitions and also point out where inconsistencies in
those definitions can result. Structures for which the decoupling
is assured are also discussed. The MTL equations to be decoupled
are in the frequency domain, and extensions to their applicability
in the time-domain are shown.

I. INTRODUCTION

N THIS PAPER we consider a (n + 1)-conductor line
consisting of (n + 1) conductors which are parallel to the
z axis in a rectangular coordinate system. Let us assume
that the conductors are of uniform cross section in the z

direction as are the properties of the surrounding media (which.

may be inhomogeneous). In other words, the line cross-
sectional dimensions are independent of z. Such a line is said
to be uniform. The multiconductor transmission line (MTL)
equations for frequency-domain analysis (sinusoidal, steady-
state excitation of the line) are

d -~ P

EV(z) =—Z1(z) (la)
d A oA

El(z) =-YV(z) (1b)

where V(z) and I(z) are n x 1 vectors containing the phasor
line voltages (with respect to the zero-th or reference con-
ductor) and phasor line currents, respectively. We use a caret
(") to denote complex-vatued quantities. The n X n complex
matrices of per-unit-length impedance, VA , and admittance, Y,
are symmetric and contain the n X n real, symmetric matrices
of per-unit-length resistance, R, inductance, L, conductance,
G, and capacitance, C, as

Z =R+ jwL
Y =G + jwC.

(2a)
(2b)

The matrices L, C, and G are also positive definite as may be
shown from energy considerations. The fundamental assump-
tion in modeling a MTL with the transmission line equations is
that the electric and magnetic fields lie in a plane transverse to
the z axis which is called the transverse electromagnetic field
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structure or mode (TEM) of propagation. This field structure
is identical to that of the static field in the transverse plane.
This allows the computation of the per-unit-length matrices
G, L, and C as solutions of Laplace’s equation for the static
2D field structure in the transverse plane. If the surrounding
medium is homogeneous with parameters of conductivity, o,
permittivity, £, and permeability, x, then G, L, and C satisfy
the following identities:

LC =CL = pel,,
LG =GL = pol,

(3a)
(3b)

where 1,, is the » X n identity matrix with one’s on the main
diagonal and zero’s elsewhere. If the medium surrounding the
conductors is inhomogeneous, these identities obviously do not
apply. All of these per-unit-length parameter matrices can be
functions of frequency aithough the per-unit-length resistance,
R, typically has the strongest dependence on frequency, and
the frequency dependence of L and C is typically negligible.
In the case of imperfect conductors (R # 0) the n X n internal
inductance matrix, L,, contains the internal inductances of the
conductors and is added to L. At high frequencies, R increases
as /f whereas L; decreases at a rate of /f. Hence the internal
inductance matrix is frequently smaller that L and therefore
often neglectable. For the case of imperfect conductors and/or
inhomogeneous surrounding media, the TEM mode cannot
exist. In this case it is assumed that these fields remain
approximately TEM which is referred to as the quasi-TEM
approximation. The validity of the quasi-TEM approximation
was investigated in [1], [2], and the MTL equations have been
successfully used to characterize lossy and/or inhomogeneous
structures into the gigahertz frequency range.

These coupled transmission line equations have a long
history of representing many diverse structures. Numerous
texts have documented their utility [3]-[14]. Some of the more
pioneering work was done around 1940 by Pipes [15], [16].
Pipes also gave a thorough discussion of their solution for
uniform and nonuniform lines in [17]. Subsequent applications
of the MTL equations appeared in telephone system [18],
[19] and power distribution system analyzes [20]-[25]. The
emphasis on prediction of crosstalk in cables that interconnect
electronic equipment renewed that interest [26]-[30], and the
MTL equations were also adapted to the investigation of the
effects of incident fields on those cable systems [30]-[32].
The increasing emphasis on microwave circuits provided a
renewed interest in using the MTL equations to model these
high-frequency structures that continues today. Much of that
work concentrated on lossless lines [33]-{37]. The increasing
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frequencies of use in high-density circuits have caused the
conductor losses, represented by R, L,, and, to some extent,
losses in the medium represented by G to be significant. The
frequency-domain transfer function obtained from a solution
of the phasor MTL equations in (1) is a straightforward way of
including those frequency-dependent losses and can be used
to provide the time-domain solution for general MTL’s via
the inverse Fourier transform. The input signal to the line is
decomposed into its spectral components and passed through
the phasor transfer function yielding the Fourier transform of
the output signal of the line. This is converted to the time
domain with the inverse Fourier transform. This time-domain
solution technique has a long history of use and is referred
to as the time-domain to frequency-domain or TDFD method
[13]. The only drawback to the TDFD method is that it relies
on superposition and hence cannot be used in the case of
nonlinear terminations of the line since the transfer function
must contain those terminations and hence is nonlinear. The
increasing use of nonlinear line terminations has required the
direct solution of the complete MTL equations in the time
domain and has resulted in numerous techniques such as
finite-difference time-domain (FDTD) methods [13], [38], the
waveform relaxation technique [39], the generalized method
of characteristics [40], [41] and the asymptotic waveform
evaluation (AWE) technique [42], [43]. Another reason for
the development of alternative direct time-domain solution
techniques is that the decoupling method which we will discuss
requires similarity transformations which, for the lossy line
case, are functions of frequency thereby making their direct
application to the time-domain solution of the MTL equations
difficult. However, the frequency-domain results of this paper
can be applied to the time domain for lossy lines with nonlinear
terminations by generating a linear 2n-port of the line and
using convolution [44]. So the frequency-domain decoupling
of the MTL equations has broad application. The decoupling
method has also been applied to nonuniform lines [45], [46].
Although we will discuss the exact solution of the phasor MTL
equations, there are also various approximate ways of solving
them most of which make lumped-circuit approximations to
the MTL [13], [14], [47], and [48].

The purpose of this paper is to give a comprehensive
discussion of the primary method of solving the phasor MTL
equations via the method of decoupling. Although this has
been a standard technique for over 60 years there remain
some misunderstandings and inconsistencies in its application.
Some of these were highlighted in [49]-[51]. Here we give an
alternative view of these problems and discuss structures to
which the decoupling technique applies.

II. DECOUPLING THE MTL EQUATIONS

The method of using a change of variables is perhaps
the most frequently-used technique for generating the general
solution to the MTL equations. In implementing that method
we transform to mode quantities as

(4a)

V(z) =Ty V,(2)
T (4b)

11 (2).
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The n x n complex matrices Ty and T define a change of

variables between the actual phasor line voltages and currents,
V and I and the mode voltages and currents, V', and I,,
In order for this to be valid, these » x n matrices must be
nonsingular, i.e., T';" and Tfl must exist where we denote the
inverse of an n. x n matrix M as M, in order to go between
both sets of variables. Substituting these into the phasor MTL
equations in (1) gives

ZVm= T, 7271,, (5a)
—d—im =-T;V1yV,, (5b)

If we can obtain a TV and a TI such that T3 1ZTI and
T YTy are diagonal as

T‘_; TI =2
Z 0 017
_ 0 z2 (68_)
g
RY 0 2]
TFIYTV =y
(1 0 07
|0 e (6b)
Do 0
L0 0 g
then the phasor MTL equations are uncoupled as
d - . op d . o
- ml(z) = '"ZlIml(z), —_Iml(z) = "’ylvml(z)
dz dz
d . . 4. o
dZV ( ) - _ZnImn(Z)a Elmn(z) = —yann(z) (1)

Therefore if we can find two n X n matrices TV and T 1 which
simultaneously diagonalize both per-unit-length parameter ma-
trices, Z and Y the solution essentially reduces to the solution
of n uncoupled two-conductor lines.

In order to further address that question, we examine the
application of the mode transformations to the uncoupled,
second-order MTL equations obtained from (1) by differen-
tiating each with respect to z and substituting the other:

d? PR
a . NP
1) =Y Z1(). (8b)

In differentiating each equation with respect to z we are
assuming that the per-unit-length parameter matrices, Z and
Y are independent of z, i.e., the line is uniform. It is important
to note that ZY # YZ and the order of multiplication must be
preserved. Substituting the transformations given in (4) yields

d2

Voi(z) = 1ZYTV Vi(z)

= (Ty' ZT)(T7 YTy )V ()
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=55V (2) (9a)
a2 . NP
@Im(z) =T;'YZT1,.(2)
=(T7'YTv) (T 2T 1)1 (2)
=gal . (2). (9b)

If 2 and # are each diagonalized by TV and T 7 as in (6), then
the second-order equations in (9) are likewise diagonalized
by TV and TI but the reverse is not necessarily true. For
example, if Zand Y happen to satisfy the condition that
ZY =YZ = a1, (an important special case of a lossless
line in a homogeneous medium) then we may choose Ty =
TI = 1,, and the second-order differential equations in (9)
are uncoupled yet the first-order equations in (5) are not:

= Z and y = Y. For this important special case, all n
propagation constants are identical. In the following we will
show that if all n propagation constants are distinct, then
transformations Ty and TI can be found which decouple the
second-order equations in (9), and, in addition, z and g are
likewise diagonal so that the first-order equations in (5) are
simultaneously decoupled by the same transformations 7'y and
T';. In the case of repeated propagation constants we will show
that 2 and ¥ are not necessarily diagonal but are block diagonal
where the blocks are associated with the distinct propagation
constants.

The decoupling of the second-order equations as in (9) relies
on finding a TV andaT 1 which diagonalize ZY and Y Z via
similarity transformations as

T2V Ty =25 =47
T7YYZT =93 = 47

(10a)
(10b)

where 42 is a n x n diagonal matrlx The columns of TV
are said to be the eigenvectors of ZY and the columns of T,
are the eigenvectors of Y Z [52-54]. The entries in 7 , 42 for
1=1,---,n, are the elgenvalues of ZY and of YZ [52-54].
That the eigenvalues of ZY and YZ are the same follows
from the fact that the eigenvalues of a matrix, M, and its
transpose, M, are the same [52-54]. Taking the transpose of
zy yields (ZY )= = Y'Z'! = YZ where we have used the
fact that Z and Y are symmetric, i.e., Z'=ZandY' =Y.
Therefore the transpose of ZY is YZ thus showing that they
have the same eigenvalues. Hence, in order to decouple the
second-order MTL equations we only need to find a Ty or
a TI that diagonalize the product of Z and Y as in (10a) or
as in (10b).

In order to diagonalize ZY orYZ asin (10) we must be able
to find a linearly independent set of n eigenvectors (columns
of TV and TI) in which case TV and TI are nonsingular
[52,53]. A sufficient condition for this is that all n eigenvalues,
42, are distinct [52,53]. The case of n distinct eigenvalues is
straightforward and poses no problems since it can be shown
that the eigenvectors associated with distinct eigenvalues are
unique only within an arbitrary constant [52,53]. The problems
arise in the case of repeated eigenvalues of ZY. There are
important cases where some of the eigenvalues are repeated
yet a linearly independent set of n eigenvectors can be found
such that ZY can be diagonalized as in (10). In the case of
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repeated eigenvalues, the eigenvectors (columns of Ty and
Ty) corresponding to those repeated eigenvalues are not so
unique. The eigenvectors associated with a repeated set of
eigenvalues can be transformed with a nonsingular transfor-
mation to another set which retain the ability to decouple the
second-order equations. Structures that exhibit certain types of
symmetry can result in repeated eigenvalues and hence give
rise to this nonunique assignment of the columns of Ty or
T'1 associated with those repeated eigenvalues. The nonunique
assignment of these columns of .’i‘v or TI will not effect
the diagonalization of the second-order equations in (10) but
will affect the diagonalization of the first-order equations in
(6). Nevertheless, the problem of decoupling the first-order
equations in (1) is closely associated with the problem of
decoupling the second-order equations of (8). Hence we will
concentrate on decoupling the second-order equations in (8)
and will assume in this article that Z¥ can be diagonalized
as in (10).

Thus the equations governing the mode voltages and cur-
rents in (9) are decoupled and have the simple solution

Vin(z) =e 7V + eV, (11a)
I.(z) =e I} — I, (11b)

where the matrix exponentials are defined as

etz 0 . 0

N L2z

i | 0 e (12)

: . " 0

0 ‘e 0 e:l:ﬁ’nz

and V,ﬂ; and IZ are nx 1 vectors of (as yet) undetermined con-
stants associated with the forward/backward-traveling waves
of the modes. Transforming back to the actual line voltages
and currents via (4) gives the general solution to the MTL
equations as

(132)

V(z) = TV(e »sz +e¥V,)
I (13b)

(2) =Ti(e 1),

Therefore if we can find a transformation that diagonalizes
either ZY or Y Z then the decoupling of the second-order
equations is assured and the general solution to the MTL
equations in (1) can be readily obtained.

Because of (10), the mode transformations TV and T 1 are
related. To obtain this relationship, suppose there are k distinct
eigenvalues. Arrange them in 42 as

—9z I+

’711n1 0 0
2 ‘. :
;5/2 — 0 7217%2 . . (14)
: .. . 0
0 0 "A)'%lnk

where 1, is the nk x nk identity matrix and nk is the
multiplicity of the repeated eigenvalue 4%. Digital computer
subroutines that compute eigenvalues/eigenvectors of a general
matrix do not generally provide this ordering. The eigenvectors
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(columns of TV and T 1) are arranged in the same sequence
as the eigenvalues in (14) as

Tv =[Tv1 Tve
Tr=[Tn Tr

(15a)
(15b)

Tvi)
Tz
where TVk and Ty, are n x nk. Using the relations in (10)
yields
(16a)
(16b)

Z? = Tv’A)’zT‘jvl

V7 =TT
Observing that Z and Y as well as 42 are symmetric and
taking the transpose of (16) yields

(172)
(17b)

AT =T T142

YTTy =TiTvA.
Because of these relations and the assumption that §7 # 47
for ¢ # 4, the Ty and T; must be related as

VT =D
D, 0 0
~|° P (8)
: . .0
0 ... 0 Dy

where D is block d1agonal and Dk is nk x nk. Since TV and
T are nonsingular, D is also nonsingular. However, D is not
necessarily symmetric. Equation (18) shows that

i # g,

If TV and T 1 are real, (19) is equivalent to stating that the
eigenvectors are orthogonal [52]- [54] If all n eigenvalues are
distinct, each Dy, is a scalar and Dis dlagonal (and therefore
symmetric) and hence T4Ty = D = TVTI with D, on the
main diagonal and zeros elsewhere.

The transformation matrices can be redefined such that D
is the identity matrix. An essential requirement of any such
redefinition is that the redefined transformations must retain
the ability to diagonalize the second-order equations as in (10).
There are several ways of doing this. For example, suppose
we redefine the transformations as

Bt Ay, = 7, A, = 0 (19)

T, =Ty (D) ! (202)
T, =T (20b)
The new transformations yield
A7 At A gL A
(Ty)'T; =D 'T%,T;
=1,. 2D

These redefined transformations retain the ability to de-
couple the second order equations. To show this, we form
(T~ 2YT, = DtT“leTV(Dt) L= D'32(DYH! =
42. This is true because D) and 4% commute since they
are block diagonal as in (14) and (18) and each block of
42 is simply 421,;. Because the redefined transformations

retain the ability to decouple the second-order equations,
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all of the previous results remain unchanged. Hence, we
may assume throughout the remainder of this article that the
transformations are chosen such that D is the identity matrix:

TLT =T8Ty = 1,,. (22)

Next we will show that z and 4 in (6) are block diagonal
and symmetric. Let us assume that none of the eigenvalues
(propagation constants) are zero and hence, according to (10),
2 and gy are nonsingular. Premultiplying and postmultiplying

(10) by, for example, ! and 27! yields
Z’y _&22 (23a)
¥7 =4%9. (23b)

Observing that 4* has the form given in (14) where 47 # 47
for 7 # j, (23a) shows that 2 is block diagonal as

21 0 .- 0
2= |0 = (24)
o . 0

where %,; is n¢ X nj. Similarly we can show that ¥ is also
block diagonal. In the case of n distinct eigenvalues, the z,;
are scalars and hence 2 and ¢ are diagonal matrices so that the
first-order equations in (6) are in fact decoupled. In the case
of repeated eigenvalues z and # are simply block diagonal
matrices. Nevertheless, if the transformations are chosen such
that (22) is satisfied then z and ¢ are also symmetric. This can
be shown by substituting (22) into (6) to yield

oAy =5
YTy =4,

(25a)
(25b)

Since Z and Y are symmetric, this shows that z and 7 are
also symmetric, i.e., 2 = 3* and ¥ = ¢".

The general solutions for the line voltages and currents
given in (13) contain a total of 4n undetermined constants

in the m x 1 vectors V Vm,I:,Q, and j;;b. We will now
relate those by defining the characteristic impedance matrix
thereby reducing the number of undetermined constants to 2n.

Substituting (13b) into (1b) yields

N N d -
V(iz)=-Y '
(2) —1(2)
=Y T AT Tre 211 + 72 1).  (26)
—
Zo
If we define the characteristic impedance matrix as
Zo =Y M1t 27
then
V(z) =ZcT (e I} + e7°17) (28a)
I1(z) =Tr(e 721} — 717) (28b)

and the number of unknowns is reduced to the 2n unknowns
in the n x 1 vectors I} and I, . An alternative form of the
characteristic impedance matrix can be obtained from (10b)

Y T, = 27,472 (29)
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Substituting this into (27) yields

Zo = 2Tt (30)
Similarly, substituting (13a) into (1a) yields
R a i d o~
I(z)=-2"1"
(2) V()
= 2T ATF Ty (e V) —eV,). (1)
I
Y.
If we define the characteristic admittance matrix as
Yo = Z7 ' viTyt (32)
then
Viz) =Ty (e V) +e¥V.) (33a)
i(z) =V Ty (e ¥V, —e™V)) (33b)

and the number of unknowns is reduced to the 2n unknowns
in the n x 1 vectors V, and V,,. An alternative form of the
characteristic admittance matrix can be obtained from (10a)

Z7'Ty =YTvi? (34

Substituting this into (32) yields
Yo =YTyvy ' T3 (35)
Additional relations for the characteristic

impedance/admittance matrix can be obtained. Substituting
(28a) and (33b) into (1a) gives

VE =T Y 1271 20T Ae ™20 (36a)
Similarly, substituting (28b) and (33a) into (1b) gives
VE = VT Y 1T 4e T IE. (36b)
Equation (36) shows that
Zo=ZYcY 37
Substituting (32) into (37) yields
Zo =TyAT7Y L, (38)

But this is the inverse of (35) showing that f’c = 251 as
expected. In like manner we may obtain

Zo =Ty \TZ (39)
Yo =TTty (40)
Yo =TiAT7 271 (41)
Additional relations for the characteristic impedance/

admitance matrices can be obtained by substituting (18). For
example, substituting (18) into (27) yields

Zo =Y TY) ATy “42)
since i)f?b_l = 4 even if Ty and T are not chosen such
that (22) is satisfied. But (42) is the transpose of (38) showing
that, as expected, the characteristic impedance and admittance
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TABLE 1
Characteristic Inpedance/Admittance Matrix Relations
Zc Ye

LVEAY: 7' 31!
- R JE |
AVEEYS YTyy Ty
iy iy Z Iy ity
gy 171 vt T it
AT YA
v E) i 2 (if) i1
T a =l a
2(t) ' v(t) 9 1

matrices are Symmetric: ZC = ZC,Y = Y. Similarly,
substituting (18) into (30), (32) and (35) yields

Zo =Z(Ty) 4T (43)
Yo =2Z"YT%) 4T (44)
Yo =Y (T%) 51Tt (45)

A summary of the relations for the characteristic
impedance/admittance matrices is presented in Table 1.

III. SPECIALIZED RELATIONS

All of the above expressions for voltage and current in
(28) and (33) as well as the expressions for the characteristic
impedance/admittance matrix given in Table I involve Ty
or T';. None involve Ty and T7. They only assume that
the products of the per-unit-length impedance and admittance
matrices, Z and Y are diagonalizable as in (10) and that Z and
Y are symmetric. So long as one consistently uses expressions
for Z¢ as in Table I and the expressions for voltage and
current in (28) or (33) that involve only TV or T 1 the results
are independent of the redefinition of the elements of T'y- or
T_r such as in (20). In addition, they do not assume that the
matrices z and ¢ in (6) or D in (18) are diagonal or that
Ty and T; are chosen to satisfy (22). The problems and
inconsistencies arise when one attempts to define relations
between TV and T 150 that the above relations can be written
in terms of a mix of TV and T I

It is common to find the following relations [12], [34]-[37],
[49]-[51]:

Zo =My M, = (MY) M7 = My M7! (462)

M{ M =1, (46b)
= MMy

M; =Z"'Mv% (46¢)

My =Y M4 (46d)

The M v and M 1 are not the same as TV and TI but are
related by appropriate transformations of the columns of those
matrices as will be demonstrated.

In order to obtain the relationships in (46) we will assume
that TV and T 1 are chosen to satisfy (22), Tﬁ/T r=1,,and
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will define a nonsingular, block diagonal, matrix d such that
2 and g are block normalized to the propagation constants of
the modes, ¥, as

T 2T =3

—dy (47a)
T Ty =4

=d 4 (47b)

where d;; is ni x nj and d;; = O for ¢ # j. This is permissible
since 2 and ¢ are similarly block diagonal as was shown
previously and we assume that there are no zero propagation
constants. In addition we showed that 2 and ¢ are symmetric
and hence d is symmetric, i.e., d = d°. Therefore Ty and T';
are related as

T, =2 —1TV&@ (482)
v =V d s (48b)

Substituting these into the relations for the characteristic
impedance matrix given in Table I and observing that the
transformations are chosen to satisfy (22) yields

Zc =Tydly’

=TydT%. (49)

Define the transformations in (46) as
My =TvDy (50a)
M;=T.D; (50b)

where f)v and D 1 are block diagonal, nonsingular matrices
with Dy, 1,; of dimension ni x nj and Dy y;, = 0 for 1 # j.
In terms of these, the above results become

c =MyD'dD M7?

= My Dy d(Dy ) M, (51a)

MM =D Dy (51b)
MMy =D Dy (51c)
M =Z"'MyDydyD; (51d)
My =Y MDA 4D (51¢)

In order to provide the equivalence between these expressions
and the common ones given in (46) we must have

Dy =d™17? (522)
by =" (52b)

in which case (51) are identical to (46). It should be noted
that in the common case where all n eigenvalues are distinct,
dis diagonal and these transformation matrices are simple to
obtain.

Perhaps the desire to obtain the relations in (46) arises for
the following reason. The average power flow on the line is

Puy(2) = iRe(V'I)

= LRe(V!, 1% T71%,) (53)
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where M* denotes the complex conjugate of M. If Ty and
T; are such that

54
then

Pa(2) = IRe(V%,7,) (55)
and the power is the sum of the powers of the individual
modes. The condition in (54) is equivalent to stating that
the voltage and current eigenvectors, the columns of T’y and
TI, are orthonormal [52}-[54]. In subsequent subsections we
will show several cases for which the MTL equations are
decoupleable and (54) is satisfied. For these cases M t M #
1,, except in the lossless line case where M v and M 7 are
both real so that (46b) is satisfied.

IV. SOLUTION FOR LINE CATEGORIES

The solution process described previously assumes that
one can find n X n, nonsingular transformation matrices, T
and/or Ty, which diagonalize the product of per-unit-length
parameter matrlces YZor ZY via a similarity transformation
asT7Y 7T =42 and T, 1ZYTV 42. There are a number
of known cases of n X n matrices, M, whose diagonalization
is assured via a similarity transformation as TMT.

These are [52]-[54]:

1) all eigenvalues of M are distinct;

2) Mis real, and symmetric;

3) Mis complex but normal, i.e., MM = M* M where
we denote the transpose of a matrix by ¢ and its
conjugate by *

4) Mis complex and Hermitian, i.e., M = Mt .

For normal or Hermitian M , the transformation matrix can
be found such that 7~ = T*" which is said to be a unitary
transformation. For a real, symmetric M, the transformation
matrix can be found such that T~' = T* which is said to
be an orthogonal transformation. For other types of matrices,
we are not assured that a nonsingular transformation can be
found that diagonalizes it.

There exist digital computer subroutines that find the eigen-
values and eigenvectors of a general complex matrix. These
can be used to attempt to diagonalize ZY or YZ. However,
because the number of conductors, n, of the MTL can be quite
large, it is important to investigate the conditions under which
we can obtain an efficient and numerically stable diagonaliza-
tion. In addition, the diagonalization must be repeated at each
frequency so it is important to determine where ZY or Y Z can
be diagonalized with a frequency-independent transformation.
For application to the direct time-domain solution of the
MTL equations via decoupling we also must require the
transformation to be real and frequency independent. The
following subsections address those points.

A. Perfect Conductors in Lossy, Homogeneous Media
For this case, R = 0 and we have the identities in (3) so that

Z =jwlL (56a)
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Y =G + jwC
= p(o + jwe) L1 (56b)

and

YZ = ZY = juu(o + jwe)l,. (57)

The propagation constants are identical and given by 4, =
v/ jwp(o + jwe). Hence we only need to diagonalize L as

T LT =L, (58)
where L, is a diagonal matrix with eigenvalues /,,; on the di-
agonal and zero’s elsewhere. This can be readily accomplished
with an orthogonal transformation such that Tl="T" using,
for example, the stable and highly efficient Jacobi algorithm
[54]. Defining the transformation matrices as

Ty =T
=T
=(T71)* (59)
we have
T T = jul,
= dy (60a)
T7YTy = (o + jwe)L;}!
=d'4. (60b)
Hence z and ¢ are diagonal. Therefore we obtain
d=%r,., (61a)
T =1, (61b)
Thus
Dy =\ [ 2L/ (62a)
v
D = D‘—/l (62b)
so that the transformations in (50) become
My =, /%‘"TL;{? (63a)
M =(M;h) (63b)

and the power flow relation in (55) holds. In addition,
MM} = 1, in the case of a lossless medium, o = 0.
One can also verify that the identities in (46) hold. The
characteristic impedance becomes
Ze =41,

4

(64)

An example of this case is the coupled stripline.
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B. Perfect Conductors in Lossless, Inhomogeneous Media

For this case, R = 0 and G@ = 0 and YZ = —w2CL.
However, we no longer have the identity in (3). Nevertheless
we may diagonalize L and C since they are real, symmet-
ric and positive definite. This is a classic and well-known
problem [52-54]. First find an orthogonal transformation that
diagonalizes C as

UtCU = 6* (65)
where 6? is a diagonal matrix with 62 on the main diagonal and
zero’s elsewhere and U~! = U?. Since C is real, symmetric,
and positive definite, its eigenvalues, 0?, are real, positive,
and nonzero. Hence, we can obtain the square root of 62,6,
which is real, diagonal, and nonsingular and form the product
U LUY. Since this is real and symmetric, we can diagonalize
it with another orthogonal transformation as

SHOUPLUG)S = A? (66)

where A? is a diagonal matrix with real elements A? on the
main diagonal and zero’s elsewhere and S™! = S* as before.

Define the matrix T as
T =U48S. 67

In order to minimize numerical errors, the columns of T can
be normalized to a Euclidean length of unity as

Toorm =Ta (68)

where « is the n X n diagonal matrix with entries
(69a)
(69b)

The mode transformations that simultaneously diagonalize L
and C can then be defined as

T; =UbSa
= Tnorm (703)
Ty =U0"'Sa~ !
—1
=T (70b)
Also
TI—I — a—lste—lUt
=Tt (71a)
T, =aS'U?
=T (71b)
This gives
TLT = oS00 LU6S
=a?A? (72a)
T7ICTy =18 U CUH 1 Sa™!
=a”2 (72b)
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Thus T ZY Ty = T7'VZT; = —w?A? and

4 = jwA. (73)
Therefore
T‘_,IZTI = jwa’A?
=d¥ (742)
(TI_IYTV :jwa_2
=d 4 (74b)
and % and ¢ are diagonal. Hence we obtain
d=a’A (75a)
T =1,. (75b)
Thus
Dy =aA'/? (762)
D =Dy! (76b)
and the transformations in (50) become
My =U§"1SA/? (772)
M;=UgSA™/2, (77b)

Again the power flow relation in (55) holds and M%, M’} = 1,,.
One can also verify that the identities in (46) hold. The
characteristic impedance matrix becomes

Zc =UOT'SAS U, (78)
This method was obtained previously in [13], [14], [27] and
is a simple extension of well-known results [52]-[54]. It is
equivalent to the method of [49]. The coupled microstrip is a
common example of this case.

C. Lossy Conductors in Lossy, Homogeneous Media

Consider the case where we permit imperfect conductors,
R # 0, but assume a homogeneous medium. The matrix
product Y Z becomes, using the identities for a homogeneous
medium given in (3)

YZ =GR + jwCR + (jupo — w?ue)l,

= (E + jw)CR + (Jwpo — w?pe)l, 79
€

and we have neglected the internal inductance of the conduc-

tors. Hence we need only diagonalize CR as

T-'CRT = A? (80)
where A? is a diagonal matrix with A2 on the main diagonal.
The eigenvalues Y Z become

. o )

4 = (g -I-jw)Af + (Jwpo — w?ue). (81)
But this is virtually identical to the previous problem where we
interchange the roles of L and R. However, R is frequency
dependent as is T' (which is real). Although this poses no
computational problems for frequency-domain calculations it
does create problems in the direct time-domain solution. If
either all (n + 1) conductors are identical or the n conductors
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are identical and the reference conductor losses are ignored,
then (80) requires that we only diagonalize C so that the trans-
formation is frequency independent. Lossy, coupled striplines
can be handled with this development.

D. Cyclic-Symmetric Structures

The MTL structures considered in the previous sections are
such that the matrix products YZ and ZY can always be
diagonalized with a numerically efficient and stable similarity
transformation. The transformations are real and, with the
exception of the case in section (c), frequency independent
and can be directly applied to the time-domain solution. Not
all structures can be diagonalized in this fashion. One can
attempt to diagonalize ZY or YZ with a digital computer
subroutine that determines the eigenvalues and eigenvectors of
a general, complex matrix but we are not assured that a linearly
independent set can be found that diagonalizes the matrix.
Furthermore, the transformation matrices will be frequency
dependent. This section discusses MTL’s which have certain
structural symmetry so that a numerically stable (and trivial)
transformation can be always be found which diagonalizes
ZY and YZ. Furthermore this transformation is frequency
independent regardless of whether the line is lossy and/or the
medium is inhomogeneous, i.e., the general case.

Consider structures composed of n identical conductors and
a reference conductor wherein the n conductors have structural
symmetry with respect to the reference conductor so that the
per-unit-length impedance and admittance matrices have the
following structural symmetry [13], [29]:

Zz Zl Zz 23 23
- ?3 ZAz ZA1 ?2 ‘ A 82)
: 3 Zg T, v Z3
Zy o D 2y
Zy Zs 73 Zy 7|

and Y has a similar form. A general cyclic-symmetric matrix
M has the entries given by

[M];, = M|7,—j|+1 (83a)

where
Mjt, = M, (83b)
Mn+2—] = Mj (83¢c)

and indices greater than n or less than 1 are defined by
the convention: » + j = 5 and n + ¢ = 4. Because of
this special structure of the per-unit-length matrices, they are
normal matrices, 27" =72V 7 , and we are guaranteed that
each can be diagonalized as [53]

(84a)
(84b)

=~ ~>
I
2>

e

_1Z
-1y

il
~2>
AN
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where the n x n matrices 4% and 4% are diagonal whose
diagonal entries are given by

[’AY%]M = LZ[Z]IPA{(%r/n)(?—l)(i—l)}] (852)
=1

n

e = [Z[17]1pA{(Q”/"XP*”(""”}]. (85b)

=1

Hence the first-order equations in (5) are uncoupled. The

transformation 1is trivial to obtain

o 1 , .
[ = - sl@r/n)=1)G-1)) (86a)

and T is unitary and symmetric:
Pt g

=T, (86b)

The square roots of the eigenvalues of ZY and YZ (the
propagation constants) are then 4 = 4z%y. Observe that
T =177

=D (872)

where D has a particularly nice form

1 0 0 --- 0 0 ]
00 0 --- 0 1
N 000 --- 1 0
D= - (87b)
o011 .- 0 O
6 1.0 --- 0 0 |
Hence we may define, according to (20)
Ty =T(D7')
=71 (88a)
TI =T (88b)

and T@TI = 1. According to (17) D commutes with 42 so
that we have the identitx &ZDA: DfAy2 .AIn additAion, because of
(87a) D is symmetric, D* = D, and D~ = D. Therefore
Dy =2
=(Diziy")?
=1A)1/2’$’1Z/2’$’;1/2
ﬁ] = 3—1/2
G
A 1/2,—1/2,1/2
) 27 z / ny/

(89a)

(89b)

and the transformations in (48) become

My =TD™ Y2545 (90a)
My =TD /24,2512, (90b)

The transformation is not unitary, so that the power flow
relation in (55) does not hold. However, 7%,1% = D™! = D.
Because of the form of D given in (87b) the total power
flow on the line is a simple combination of the power in the
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modes. One can also verify that the identities in (46) hold. The
characteristic impedance matrix becomes

Ze = Taz4y'T". o1)

As an illustration of these results consider a four-conductor
line (n = 3) with cyclic symmetric structure such that

. [2 2 Zn
Z=\2n 2. Zn ©2)
m Zm ZS

and Y has a similar form. The matrix 7" which decouples the
equations becomes

1 1 1 1
T=—=1 e2/3 ¢itn/3 (93a)
V3|1 gian/s  ga2a/s
and D has the form
o 1 0 0]
D=T'T=T*=1|0 0 1 (93b)
0 1 0]
whose square root is
1 ]
N [
DVi= " V2 VZj|. (93¢)
j 1
0 = s
V2 V2
Hence Ty = T7' = T* and T; = T. The propagation

constants become

=1/ (Z, +22) (¥ + 2%r) (942)
52 =45 = \/(Zs = Zn) (Vs = ¥rm) (94b)

and two of the propagation constants are equal. Define the
characteristic impedances of the modes as

t=\, +2Zm)/(Y +2Y,) (95a)
25 = \/ /Yy = V) (95b)
yielding
o Z&E 0 0
d=Dizay' =0 0 Zg (96)
0 Z; 0
The characteristic impedance matrix becomes
Zc ZZTI':)’_ITI_l
=TvdT;!
=THz4' T )
(Z++QZC) (Z+ Zc) (Zc _Zc)
=5| (2% - AE) (Z +22¢) (Zc - Z¢)
(ZE-25) (ZE-25) (Z&+227)
97
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We obtain
o [ZE o 0]
Dy=|0 0 Zg
L0 Z; O
[\ 2% 0 0
1 5
=| 0 —E c \/— Zc (98a)
J 5
0 —=\/Z
: V2j Ve \/_J
VYE 0 0
o W= Ny
Dr=D3'=| 0 \/— \/— (98b)
0 \/__\/ \/_\/
where ZA(:'Ej =1 /Yﬂj The transformations become M; =
TD], MV = T*Dv.

There are a number of cases where a MTL can be approx-
imated as a cyclic-symmetric structure. A common case is a
three-phase, high-voltage power transmission line consisting
of three wires above earth. Assuming a balanced line wherein
the conductors are transposed at regular intervals, the per-
unit-length matrices, Z and Y take on a cyclic-symmetric
structure. The transformation is referred to in the power trans-
mission literature as the method of symmetrical components
[5]. In the case of unbalanced lines where, for example, one
phase may be shotted to ground, this transformation does not
apply. Other approximations of MTL’s as cyclic-symmetric
structures are useful. Cable harnesses carrying tightly-packed,
insulated wires have been assumed to be cyclic symmetric
structures on the notion that all wires occupy at some point
along the line all possible positions [29]. This leads to a cyclic-
symmetric structure of the n x n per-unit-length impedance
and admittance matrices that is similar to the special case
of transposed power distribution lines in that all off-diagonal
terms are equal and, if we assume the conductors are identical,
the main diagonal terms are equal.

Other common cases are the cyclic-symmetric, three-
conductor lines consisting of two identical conductors above
a ground plane such as the coupled microstrip. The per-unit-
length impedance and admittance matrices become

7 o__ Zs Zm
Z = [ . 7 ] (99a)
o _ [V Y
Y = [f’m v, ] (99b)
The transformation matrix and propagation constants simplify
to
Tr=fy= [t 1 (100a)
i =\ (Ze+ Zn) (Vi + Vin) (100b)
42 = (Ze = Zm)(Ya = Vo). (100c)

This transformation is very common in the microwave litera-
ture and is referred to as the even-odd mode transformation.
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Defining the even-odd mode characteristic impedances as

i (101)

_[25 o
0 Z;
and D = 1,. The characteristic impedance matrix becomes

L [(Bh25) (25— 2g)
Zo= [(ZZ—ZZ) 59,59

Zs+
if ==
c v, +

>N>
3

we obtain

R

(102)

(103)

N
QO+
+
N

Q

Also

(104a)

(104b)

Nis
BN
+io+| Q+ o+
| |
Sl

Ye

The power relation in (55) as well as the identities in (46)
are satisfied.

E. The General Case

The results of this paper assume that a similarity trans-
formation can be found which diagonalizes the products of
Z and Y. This is accomplished for the above cases but
for others one may or may not find n linearly independent
eigenvectors. Although other cases may not be diagonalizable
they can be reduced via a similarity transformation to more
convenient forms. For example, all matrices can be reduced to
the Jordan canonical form with the eigenvalues on the main
diagonal, one’s in selected positions on the upper diagonal,
and zero’s elsewhere [52]-[54]. Although not completely
decoupled, the solution of the second-order MTL equations
is considerably simplified [27]. Also one can always find a
unitary transformation that reduces any general matrix to upper
triangular form [53]. This reduction, while not completely
decoupling the MTL equations can result in a simplification
of the general solution.

V. REFLECTION COEFFICIENT MATRICES

It is common to define a voltage reflection coefficient
matrix, fv(z), by analogy to the two-conductor line. The
expressions for the phasor voltages and currents in (13) can
be written in the form of forward- travelmg waves V+(z) and
I (2), and backward-traveling waves, V() and I~ (2), as

V() =V () +V (2) (1052)
I(z) =1T(2) = 1" (2) (105b)

where VE(2) = Tye™*VE and IF(2) = Tret2 1%, As
was shown previously, the forward and backward traveling
voltage and current waves are related by the characteristic
impedance matrix as V*(z) = ZcI*(z). Define the voltage
reflection coefficient matrix, Iy (2), in a logical manner relat-
ing the reflected or backward-traveling voltage waves to the
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incident or forward-traveling voltage waves at any point on
the line yields

V7 (z) =Tv(z)V*(2). (106)

Also

I (2) =Yl (2)ZcI (2). (107)

Hence, the current reflection coefficient matrix becomes

T1(2) = ~Yolv(2)Ze (108)

since the total backward-traveling current is —I~(z). The
reflection coefficient matrices are, in general, not symmetric.
Although (108) reduces to the scalar case for two-conductor
lines, it is important to distinguish between the two reflection
coefficient matrices in the MTL case since the products in
(108) do not commute. Substituting (106) into (105) gives

V(2) =[1a + Ty (2)V(2)

=1, — ZcLi(2)Y V7 (2) (109a)
I(z) =Y 1, - Tv(2)V*(2)
=[1n + ZcT1(2)Y |V (2). (109b)
Similarly we obtain
‘A,(Z) = Zc[ln + chv(Z)Zc]j+(z)
=Zo[l, = T1())IT(2) (110a)
1(z) =[1, = YDy (2)Zo|I (2)
=1, 4+ D1 ()T (2). (110b)

The input impedance matrix at any point on the line relates
the total voltages and total currents at that point as

f’(z) = Zin(z)j(z).
Substituting (109) and (110) into (111) yields
Zin =[1n + Tv(2)][1n - Tv(2)] " 20
=Zc [ln + Ycrv(Z)Zc][ln - Ycrv(Z)Zc’]_l
=Zc[1n — T1(2)][1n + T1(2)] 72 (112)

(111)

Similarly, the voltage reflection coefficient matrix can be
written in terms of the input impedance matrix at a point on
the line from (112) as

Iv(2) = Z0lZin(2) + 2]V Zin(2) — Z6) 25

=[Zin(2) — Z[Zin(2) + Ze] 7L (113)

From the relation for the current reflection coefficient given by
(108) and observing (113) we see that the current reflection
coefficient matrix is

Ur(z) = -2 v (2)Zc
=—[Zin(2) + Zo) MZin(2) — Zc]
= =2 2n(2) = Zo[Zin(2) + Zo) T 2o (114)
Although the above formulas reduce to the corresponding
scalar results for a two-conductor line, the MTL results are

considerably more complicated. In addition, one must dis-
tinguish between whether the voltage reflection coefficient
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matrix or the current reflection matrix is being used since the
relation between the two is not simple. This has also led to
misunderstanding and confusion.

VI. SUMMARY AND CONCLUSION

This paper has attempted to clarify some of the problems
associated with the decoupling of the phasor MTL equations.
Diagonalizing the matrix products ZY and/or Y Z with simi-
larity transformations as T‘ZlZ}A’TV =4%or Tl'lffZT 1 =42
may or may not be possible. However, when it is possible, the
solution to the MTL equations is straightforward. We have
shown a number of common cases where this diagonalization
can be accomplished. For those cases where the diagonaliza-
tion is assured, it can be accomplished with a numerically
stable and frequency-independent transformation. Additional
topics analogous to the common two-conductor line for the
MTL case such as the voltage and current reflection coefficient
matrices and the input impedance matrix were also discussed.
Although these quantities reduce to the familiar results for a
two-conductor line, in the case of a MTL they are not as simple
and care must be maintained to observe the proper order of
matrix multiplication.

We also examined the common redefinitions of the trans-
formations which have led to confusion in the literature. The
keys to obtaining correct quantities such as the characteristic
impedance matrix with the alternative transformations are to
arrange the eigenvalues and eigenvectors as in (14) and (15)
and normalize the eigenvectors such that T@T 1 = 1, while
retaining the ability to decouple the second-order equations.
This leads to a consistent redefinition of the transformation
matrices M v,1- The topic is not difficult but can be made so
if one defines quantities not directly necessary to achieve the
decoupling of the MTL equations. This has led to considerable
confusion and the results of this paper are intended to point
out where the trouble arises.
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